NAG C Library Function Document

nag_dgebrd (f08kec)

1 Purpose

nag_dgebrd (f08kec) reduces a real m by n matrix to bidiagonal form.

2 Specification

3 Description

nag_dgebrd (f08kec) reduces a real m by n matrix A to bidiagonal form B by an orthogonal transformation: $A = QBP^{T}$, where Q and P^{T} are orthogonal matrices of order m and n respectively.

If $m \ge n$, the reduction is given by:

$$A = Q \begin{pmatrix} B_1 \\ 0 \end{pmatrix} P^T = Q_1 B_1 P^T,$$

where B_1 is an n by n upper bidiagonal matrix and Q_1 consists of the first n columns of Q.

If m < n, the reduction is given by

$$A = Q(B_1 \quad 0)P^T = QB_1P_1^T,$$

where B_1 is an m by m lower bidiagonal matrix and P_1^T consists of the first m rows of P^T .

The orthogonal matrices Q and P are not formed explicitly but are represented as products of elementary reflectors (see the f08 Chapter Introduction for details). Functions are provided to work with Q and P in this representation (see Section 8).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: **order** – Nag_OrderType

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., rowmajor ordering or column-major ordering. C language defined storage is specified by order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: **m** – Integer

On entry: m, the number of rows of the matrix A.

Constraint: $\mathbf{m} \ge 0$.

Input

Input

3: **n** – Integer

On entry: n, the number of columns of the matrix A.

Constraint: $\mathbf{n} \ge 0$.

4: $\mathbf{a}[dim] - double$

Note: the dimension, dim, of the array **a** must be at least $\max(1, \mathbf{pda} \times \mathbf{n})$ when order = Nag_ColMajor and at least $\max(1, \mathbf{pda} \times \mathbf{m})$ when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix A is stored in $\mathbf{a}[(j-1) \times \mathbf{pda} + i - 1]$ and if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in $\mathbf{a}[(i-1) \times \mathbf{pda} + j - 1]$.

On entry: the m by n matrix A.

On exit: if $m \ge n$, the diagonal and first super-diagonal are overwritten by the upper bidiagonal matrix B, elements below the diagonal are overwritten by details of the orthogonal matrix Q and elements above the first super-diagonal are overwritten by details of the orthogonal matrix P.

If m < n, the diagonal and first sub-diagonal are overwritten by the lower bidiagonal matrix B, elements below the first sub-diagonal are overwritten by details of the orthogonal matrix Q and elements above the diagonal are overwritten by details of the orthogonal matrix P.

5: **pda** – Integer

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **a**.

Constraints:

```
if order = Nag_ColMajor, pda \geq \max(1, \mathbf{m});
if order = Nag_RowMajor, pda \geq \max(1, \mathbf{n}).
```

 $\mathbf{d}[dim] - \mathrm{double}$ 6: Output Note: the dimension, dim, of the array **d** must be at least max $(1, \min(\mathbf{m}, \mathbf{n}))$. On exit: the diagonal elements of the bidiagonal matrix B. $\mathbf{e}[dim] - double$ Output 7: Note: the dimension, dim, of the array e must be at least $\max(1, \min(\mathbf{m}, \mathbf{n}) - 1)$. On exit: the off-diagonal elements of the bidiagonal matrix B. tauq[dim] - double8: Output Note: the dimension, dim, of the array tauq must be at least max $(1, \min(\mathbf{m}, \mathbf{n}))$. On exit: further details of the orthogonal matrix Q. 9: taup[dim] - doubleOutput Note: the dimension, dim, of the array taup must be at least max $(1, min(\mathbf{m}, \mathbf{n}))$. On exit: further details of the orthogonal matrix P. 10: fail - NagError * Output The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{m} \ge 0$. Input

Input

Input/Output

On entry, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{n} \geq 0$.

On entry, $\mathbf{pda} = \langle value \rangle$. Constraint: $\mathbf{pda} > 0$.

NE_INT_2

On entry, $\mathbf{pda} = \langle value \rangle$, $\mathbf{m} = \langle value \rangle$. Constraint: $\mathbf{pda} \geq \max(1, \mathbf{m})$.

On entry, $\mathbf{pda} = \langle value \rangle$, $\mathbf{n} = \langle value \rangle$. Constraint: $\mathbf{pda} \geq \max(1, \mathbf{n})$.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

The computed bidiagonal form B satisfies $QBP^T = A + E$, where

$$|E||_2 \le c(n)\epsilon ||A||_2,$$

c(n) is a modestly increasing function of n, and ϵ is the *machine precision*.

The elements of B themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the singular values and vectors.

8 Further Comments

The total number of floating-point operations is approximately $\frac{4}{3}n^2(3m-n)$ if $m \ge n$ or $\frac{4}{3}m^2(3n-m)$ if m < n.

If $m \gg n$, it can be more efficient to first call nag_dgeqrf (f08aec) to perform a QR factorization of A, and then to call this function to reduce the factor R to bidiagonal form. This requires approximately $2n^2(m+n)$ floating-point operations.

If $m \ll n$, it can be more efficient to first call nag_dgelqf (f08ahc) to perform an LQ factorization of A, and then to call this function to reduce the factor L to bidiagonal form. This requires approximately $2m^2(m+n)$ operations.

To form the orthogonal matrices P^T and/or Q, this function may be followed by calls to nag_dorgbr (f08kfc):

to form the m by m orthogonal matrix Q

nag_dorgbr (order,Nag_FormQ,m,m,n,&a,pda,tauq,&fail)

but note that the second dimension of the array **a** must be at least **m**, which may be larger than was required by nag_dgebrd (f08kec);

to form the n by n orthogonal matrix P^T

nag_dorgbr (order,Nag_FormP,n,n,m,&a,pda,taup,&fail)

but note that the first dimension of the array \mathbf{a} , specified by the parameter \mathbf{pda} , must be at least \mathbf{n} , which may be larger than was required by nag_dgebrd (f08kec).

To apply Q or P to a real rectangular matrix C, this function may be followed by a call to nag_dormbr (f08kgc).

The complex analogue of this function is nag_zgebrd (f08ksc).

9 Example

To reduce the matrix A to bidiagonal form, where

A =	(-0.57)	-1.28	-0.39	0.25	
	-1.93	1.08	-0.31	-2.14	
	2.30	0.24	0.40	-0.35	
	-1.93	0.64	-0.66	0.08	•
	0.15	0.30	0.15	-2.13	
	-0.02	1.03	-1.43	0.50 /	

9.1 Program Text

```
/* nag_dgebrd (f08kec) Example Program.
 * Copyright 2001 Numerical Algorithms Group.
 *
 * Mark 7, 2001.
 */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
int main(void)
{
  /* Scalars */
  Integer i, j, m, n, pda, d_len, e_len, tauq_len, taup_len;
 Integer exit_status=0;
NagError fail;
 Nag_OrderType order;
  /* Arrays */
  double *a=0, *d=0, *e=0, *taup=0, *tauq=0;
#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
  order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
  order = Naq_RowMajor;
#endif
  INIT_FAIL(fail);
  Vprintf("f08kec Example Program Results\n");
  /* Skip heading in data file */
Vscanf("%*[^\n] ");
  Vscanf("%ld%ld%*[^\n] ", &m, &n);
#ifdef NAG_COLUMN_MAJOR
  pda = m;
#else
 pda = n;
#endif
  d_len = MIN(m,n);
  e\_len = MIN(m,n)-1;
  tauq_len = MIN(m,n);
  taup_len = MIN(m,n);
  /* Allocate memory */
```

```
if ( !(a = NAG_ALLOC(m * n, double)) ||
      !(d = NAG_ALLOC(d_len, double)) ||
      !(e = NAG_ALLOC(e_len, double)) ||
      !(taup = NAG_ALLOC(taup_len, double)) ||
      !(tauq = NAG_ALLOC(tauq_len, double)) )
   {
     Vprintf("Allocation failure\n");
     exit_status = -1;
     goto END;
   }
 /* Read A from data file */
 for (i = 1; i <= m; ++i)
   {
     for (j = 1; j <= n; ++j)
       Vscanf("%lf", &A(i,j));
   }
 Vscanf("%*[^\n] ");
 /* Reduce A to bidiagonal form */
 f08kec(order, m, n, a, pda, d, e, tauq, taup, &fail);
 if (fail.code != NE_NOERROR)
   {
     Vprintf("Error from f08kec.\n%s\n", fail.message);
     exit_status = 1;
     goto END;
   }
 /* Print bidiagonal form */
 Vprintf("\nDiagonal\n");
for (i = 1; i <= MIN(m,n); ++i)</pre>
   Vprintf("%9.4f%s", d[i-1], i%8==0 ?"\n":" ");
 if (m \ge n)
   Vprintf("\nSuper-diagonal\n");
 else
   Vprintf("\nSub-diagonal\n");
 for (i = 1; i <= MIN(m,n) - 1; ++i)</pre>
   Vprintf("%9.4f%s", e[i-1], i%8==0 ?"\n":" ");
 Vprintf("\n");
END:
if (a) NAG_FREE(a);
 if (d) NAG_FREE(d);
 if (e) NAG_FREE(e);
 if (taup) NAG_FREE(taup);
 if (tauq) NAG_FREE(tauq);
 return exit_status;
```

9.2 Program Data

}

f08kec Example Program Data :Values of M and N 64 -1.28 0.25 -0.57 -0.39 -2.14 -1.93 1.08 -0.31 0.40 -0.35 0.24 2.30 -1.93 0.64 -0.66 0.08 0.30 0.15 0.15 -2.13 1.03 -0.02 -1.43 0.50 :End of matrix A

9.3 Program Results

f08kec Example Program Results

```
Diagonal

3.6177 2.4161 -1.9213 -1.4265

Super-diagonal

1.2587 1.5262 -1.1895
```